On the well-posedness of the inviscid 2D Boussinesq equation
نویسندگان
چکیده
منابع مشابه
Well-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation
This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...
متن کاملGlobal Well-posedness Issues for the Inviscid Boussinesq System with Yudovich’s Type Data
The present paper is dedicated to the study of the global existence for the inviscid two-dimensional Boussinesq system. We focus on finite energy data with bounded vorticity and we find out that, under quite a natural additional assumption on the initial temperature, there exists a global unique solution. None smallness conditions are imposed on the data. The global existence issues for infinit...
متن کاملWell-posedness for the 2d Modified Zakharov-kuznetsov Equation
We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.
متن کاملGlobal well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u+ (u)x = 0, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is globally well-posed in Hs (s > sα), and uniformly globally well-posed in H s (s > −3/4) for all ǫ ∈ (0, 1). Moreover, we prove that for any T > 0, its solution converges in C([0, T ]; Hs) to that of the KdV equa...
متن کاملGlobal Well-posedness of the Viscous Boussinesq Equations
We prove the global well-posedness of the viscous incompressible Boussinesq equations in two spatial dimensions for general initial data in Hm with m ≥ 3. It is known that when both the velocity and the density equations have finite positive viscosity, the Boussinesq system does not develop finite time singularities. We consider here the challenging case when viscosity enters only in the veloci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik
سال: 2018
ISSN: 0044-2275,1420-9039
DOI: 10.1007/s00033-018-0998-6